conformation (Duax, Weeks \& Rohrer, 1976), and the five-membered ring has the envelope conformation. $\mathrm{C}(7)$ is 0.587 (3) \AA out of the plane [max. deviation 0.020 (3) \AA] of the other five atoms in the sixmembered ring, and $\mathrm{C}(14)$ is 0.629 (3) \AA out of the plane [max. deviation $=0.043$ (3) \AA] of the other four atoms in the five-membered ring. Bond distances and angles are normal with a short $\mathrm{C}(5)-\mathrm{C}(10)$ single bond [1.444 (3) \AA] between the carbonyl group and the $\mathrm{C}(9)=\mathrm{C}(10)$ double bond $[1 \cdot 346$ (3) \AA]. This situation is similar to that in (2). At the three $s p^{2}$ carbon atoms, the internal angles are near 120° with $\mathrm{C}(5)-\mathrm{C}(10)-$ $C(9)=124 \cdot 2(2)^{\circ}$.

References

Ding, Y., Nassim, B. \& Crabbé, P. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 2353-2357.
Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Top. Stereochem. 9, 271-383.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cry'st. A27, 368-376.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Li, Y., Nassim, B. \& Crabbé, P. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 2349-2352.
Nassim, B., Schlemper, E. O. \& Crabbé, P. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 2337-2347.

Acta Cryst. (1984). C40, 1458-1460

Structure of 3,3'-Dichlorodibenzoyl Peroxide, $\mathrm{C}_{14} \mathbf{H}_{\mathbf{8}} \mathrm{Cl}_{2} \mathbf{O}_{4}$

By Ashfaquzzaman Syed,* P. Umrigar, Edwin D. Stevens and Gary W. Griffin
Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
and Richard J. Majeste
Department of Chemistry, Southern University at New Orleans, New Orleans, LA 70126, USA

(Received 9 February 1984; accepted 18 April 1984)

Abstract

M_{r}=311 \cdot 12\), monoclinic, $C 2 / c, \quad a=$ 14.655 (2), $\quad b=9.318$ (3), $\quad c=10.373$ (2) $\AA, \quad \beta=$ $109.67(1)^{\circ}, \quad V=1333.96 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.549 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $0.494 \mathrm{~mm}^{-1}, T=300 \mathrm{~K}, F(000)=632$, final $R=$ $0.037, R_{w p}=0.054$ for 856 observed reflections with $F>3 \sigma(F)$. A twofold symmetry axis bisects the $\mathrm{O}-\mathrm{O}$ peroxide bond. The peroxide bond distance is 1.453 (2) \AA, and $\mathrm{C}-\mathrm{Cl}$ is 1.734 (2) \AA. The molecular structure shows an antiparallel arrangement of the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{Cl}$ bonds yielding a transoid disposition. The molecules are held together by van der Waals forces, forming parallel chains.

Introduction. The structure elucidation of the title compound (I) was undertaken in conjunction with our interest in studying the nature of the peroxide ($\mathrm{O}-\mathrm{O}$) bond in various chemical and structural configurations. Of interest is the comparison of the $\mathrm{O}-\mathrm{O}$ bond distance found in the present case to that recently observed in a strained environment in an ozonide molecule (Syed, Kirschenheuter, Jain, Griffin \& Stevens, 1983).

[^0]0108-2701/84/081458-03\$01.50

(I)

Experimental. Crystals of the title compound were obtained by slow evaporation of a solution of the compound in ethanol. D_{m} not determined. EnrafNonius CAD-4 diffractometer. Approximate crystal dimensions $\quad 0.10 \times 0.63 \times 0.28 \mathrm{~mm}$. Graphitemonochromated Mo $K \alpha$ radiation. Cell dimensions from a least-squares analysis of 25 reflections with $20^{\circ} \leq 2 \theta \leq 36^{\circ}$ accurately measured on diffractometer. Systematic absences: $h k l, h+k=2 n+1 ; h 0 l$, $l=2 n+1 ; 0 k 0, k=2 n+1 ;$ space group $C 2 / c . \omega: 2 \theta$ scan mode to measure 1333 reflections with $2 \theta \leq 50^{\circ}$; $-17 \leq h \leq 17,0 \leq k \leq 11,0 \leq l \leq 12 ; 1181$ unique of which 856 treated as observed with $I>3 \sigma(I)$. where $\sigma(I)$ is the e.s.d. based on counting statistics, and included in the least-squares refinement. Three intensity-control standards measured every 2 h of exposure time (maximum decay 3.9%) and crystalorientation check after every 200 reflections. Lorentzpolarization correction applied; absorption correction © 1984 International Union of Crystallography
ignored. Structure solved by direct methods using MULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978; Frenz, 1982) based on 209 reflections; $3.95 \geq E \geq 1.32$. An E map calculated for the highest combined figure of merit (3.0) revealed positions of all the non-hydrogen atoms. H atoms located in subsequent difference Fourier synthesis. Full-matrix least-squares refinement, H atoms isotropic, others anisotropic, minimizing the function $\sum w\left(\left|\left|F_{o}\right|-\left|F_{c}\right|\right|\right)^{2}$ where $w=1 / \sigma^{2}(F)$ converged to $R=0.037, R_{w}=0.054, S=2.05 .(\Delta / \sigma)_{\text {max }}=0.03$. A final difference Fourier map showed no significant peaks, the largest being $0.21 \mathrm{e} \AA^{-3}$. Atomic scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974). All computation using the SDP package on a PDP 11/34 computer (Frenz, 1982).

Discussion. The atomic fractional coordinates and equivalent isotropic thermal parameters are listed in Table 1.* The bond lengths and angles are shown in Table 2. Respective e.s.d.'s have been provided in parentheses. The molecular conformation and the atom-labeling scheme are shown in an ORTEP (Johnson, 1976) plot in Fig. 1.

The crystal structure consists of individual molecules such that the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ClO}$ asymmetric unit is bonded to the other equivalent half by a twofold symmetry axis which bisects the $\mathrm{O}-\mathrm{O}$ peroxide bond. The atom $\mathrm{O}(2)$ was easily identified as the carbonyl O from the difference in $\mathrm{C}-\mathrm{O}$ bond lengths, the valence angle at $\mathrm{C}(7)$ (Ferguson \& Sim, 1961) and the well defined peroxide distance, 1.453 (2) \AA, involving the atom $\mathrm{O}(1)$. In contrast to 3 -chloro- $\mathrm{2}^{\prime}$-iododibenzoyl peroxide (Gougoutas \& Lessinger, 1975) the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{Cl}$ bonds adopt an antiparallel arrangement about the

[^1]

Fig. 1. ORTEP plot (Johnson, 1976) showing the atomic labeling scheme. The ellipsoids enclose 50% probability. H atoms are represented by spheres of arbitrary radius. A few torsion angles of interest are: $\mathrm{C}(2) \mathrm{C}(1) \mathrm{C}(7) \mathrm{O}(2)-176.4, \mathrm{C}(6) \mathrm{C}(1) \mathrm{C}(7) \mathrm{O}(2)$ 5.0. $\mathrm{C}(2) \mathrm{C}(1) \mathrm{C}(7) \mathrm{O}(1) 5.0, \mathrm{C}(6) \mathrm{C}(1) \mathrm{C}(7) \mathrm{O}(1)-173 \cdot 5, \mathrm{C}(1)$. $\mathrm{C}(2) \mathrm{C}(3) \mathrm{Cl} \quad 179 \cdot 4, \mathrm{O}(2) \mathrm{C}(7) \mathrm{O}(1) \mathrm{O}\left(1^{\prime}\right) 3 \cdot 2 . \mathrm{C}(7) \mathrm{O}(1) \mathrm{O}\left(1^{\prime}\right)$ C(7') 91.9° (e.s.d.s $\sim 0.4^{\circ}$).

Table 1. Positional parameters, isotropic thermal parameters and their estimated standard deviations

	x		y	z
	$\quad B\left(\AA^{2}\right)$			
Cl	$0.39848(5)$	$0.12654(9)$	$0.58623(8)$	$6.47(2)$
$\mathrm{O}(1)$	$0.0485(1)$	$0.0004(2)$	$0.3004(2)$	$5.44(4)$
$\mathrm{O}(2)$	$-0.0102(1)$	$-0.1695(3)$	$0.4028(2)$	$6.38(5)$
$\mathrm{C}(1)$	$0.1529(2)$	$-0.0899(3)$	$0.5066(2)$	$3.61(5)$
$\mathrm{C}(2)$	$0.2207(2)$	$0.0080(3)$	$0.4986(2)$	$3.83(5)$
$\mathrm{C}(3)$	$0.3125(2)$	$0.0040(3)$	$0.5973(2)$	$3.98(5)$
$\mathrm{C}(4)$	$0.3359(2)$	$-0.0941(3)$	$0.7015(2)$	$4.36(5)$
$\mathrm{C}(5)$	$0.2673(2)$	$-0.1911(3)$	$0.7074(2)$	$4.89(6)$
$\mathrm{C}(6)$	$0.1752(2)$	$-0.1897(3)$	$0.6108(2)$	$4.51(6)$
$\mathrm{C}(7)$	$0.0537(2)$	$-0.0950(3)$	$0.4022(2)$	$4.08(5)$
$\mathrm{H}(2)$	$0.295(1)$	$0.426(2)$	$0.569(2)$	$3.3(4)^{*}$
$\mathrm{H}(4)$	$0.400(2)$	$-0.091(3)$	$0.769(3)$	$6.3(7)^{*}$
$\mathrm{H}(5)$	$0.279(2)$	$-0.259(3)$	$0.766(2)$	$5.4(6)^{*}$
$\mathrm{H}(6)$	$0.632(2)$	$0.247(3)$	$0.616(2)$	$5.4(6)^{*}$

*Atoms refined isotropically. Anisotropically refined atoms are given in the form of the equivalent isotropic thermal parameter defined as: ${ }_{3}^{4}\left[a^{2} \beta_{1,1}+b^{2} \beta_{2.2}+c^{2} \beta_{3,3}+a b(\cos \gamma) \beta_{1,2}+\right.$ $a c(\cos \beta) \beta_{1,3}+b c(\cos \alpha) \beta_{2,3}$.

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$
Numbers in parentheses are estimated standard deviations in the least significant digits.

$\mathrm{Cl}-\mathrm{C}(3)$	$1.734(2)$	$\mathrm{C}(1)-\mathrm{C}(7)$	$1.493(2)$
$\mathrm{O}(1)-\mathrm{O}\left(1^{\prime}\right)$	$1.453(2)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.390(2)$
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.364(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.369(3)$
$\mathrm{O}(2)-\mathrm{C}(7)$	$1.169(2)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.370(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.373(2)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.384(3)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.381(3)$		
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}(1)-\mathrm{C}(7)$	$110.1(1)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121.5(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$120.7(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.0(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	$121.7(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.8(2)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	$117.6(2)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$119.3(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.6(2)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{O}(2)$	$123.8(2)$
$\mathrm{Cl}-\mathrm{C}(3)-\mathrm{C}(2)$	$118.6(2)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(1)$	$109.2(1)$
$\mathrm{Cl}-\mathrm{C}(3)-\mathrm{C}(4)$	$119.9(1)$	$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(1)$	$127.0(2)$

$\mathrm{C}(1)-\mathrm{C}(7)$ bond yielding, therefore, a transoid disposition which agrees well with that found in m-chlorobenzoic acid (Gougoutas \& Lessinger, 1975). This, perhaps, is due to rotation of the phenyl ring about the $\mathrm{C}(1)-\mathrm{C}(7)$ bond in order to minimize the nonbonded repulsions: torsion angles $\mathrm{C}(6) \mathrm{C}(1) \mathrm{C}(7)$ $\mathrm{O}(1)$ and $\mathrm{C}(2) \mathrm{C}(1) \mathrm{C}(7) \mathrm{O}(2)$ are -173.5 and -176.4° respectively.

The peroxide bond distance $\mathrm{O}(1)-\mathrm{O}\left(1^{\prime}\right)$ $\mid 1.453$ (2) \AA | is considerably shorter compared with the $\mathrm{O}-\mathrm{O}$ distances, $1.469(3)-1.484$ (3) \AA (Miura, Ikegami, Nojima, Kusabayashi, McCullough \& Nagase, 1983; Syed et al., 1983, and references therein), found in more strained environments such as the ozonides where the ring structure forces an eclipsed configuration about the $\mathrm{O}-\mathrm{O}$ bond. The $\mathrm{C}-\mathrm{Cl}$ length 11.734 (2) $\AA \mid$ compares well with the values for similar structures: 1.737 (Ferguson \& Sim, 1961), and 1.740 (1) \AA (Domenicano, Vaciago \& Coulson, 1975; Bocelli \& Grenier-Loustalot, 1983a,b,c).

Fig. 2. Stereoview of the molecular packing in the unit cell along the b axis, with c axis approximately horizontal and a axis vertical.

Fig. 2 represents the stereopacking of the molecules. The shortest intermolecular contacts between nonhydrogen atoms are 3.279 (2) \AA for $\mathrm{Cl}-\mathrm{O}(2)$ and 3.285 (3) \AA for $\mathrm{O}(2)-\mathrm{O}(2)$. The molecules are held together by usual van der Waals forces to form parallel chains.

The authors wish to acknowledge gratefully the support of this research in part by the Cancer Association of Greater New Orleans (Grant Number 120-82) and the National Science Foundation (Grant Number CHE78-06615). They are also grateful to the National Science Foundation for an equipment grant
(Grant Number CHE82-08754) used to purchase the X-ray diffractometer used in this research.

References

Bocelli, G. \& Grenier-Loustalot, M. F. (1983a). Acta Cryst. C39, 1659-1661.
Bocelli, G. \& Grenier-Loustalot, M. F. (1983b). Acta Crist. C39, 1661-1662.
Bocelli, G. \& Grenier-Loustalot. M. F. (1983c). Acta Cryst. C 39, 1663-1664.
Domenicano, A., Vaciago, A. \& Coulson, C. A. (1975). Acta Cryst. B31, 1630-1641.
Ferguson, G. \& Sim, G. A. (1961). Acta Cryst. 14, 1262-1264.
Frenz, B. A. (1982). The SDP Program Sistem. Delft: EnrafNonius.
Gougoutas, J. Z. \& Lessinger, L. (1975). J. Solid State Chem. 12, 51-62.
International Tables for X-ray Cristallography (1974). Vol. IV. Birmingham: Kynoch Press.
Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Main, P., Hull, S. E., Lessinger. L., Germain, G., Declerco. J.-P. \& Woolfson, M. M. (1978). multan78. a System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Miura, M., lkegami, a., Nojma, M.. Kusabayashi, S., McCullough, K. J. \& Nagase, S. (1983). J. Am. Chem. Soc. 105, 2414-2426.
Syed, A.. Kirschenheuter, G. P.. Jain, V.. Griffin, G. W. \& Stevens, E. D. (1983). J. Org. Chem. Submitted.

Acta Cryst. (1984). C40, 1460-1462

Structure and Stereochemistry of 2-Methylthio-7-(p-bromophenyl)-8-phenoxy-4,5-benzo-3-aza-2-nonem,* $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S} \dagger$

By M. Soriano-García, \ddagger R. A. Toscano, E. Cortés and R. Martínez
Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510 , México DF

(Received 23 January 1984; accepted 16 April 1984)

Abstract. $\quad M_{r}=479.4$, monoclinic, $\quad P 2_{\mathrm{I}} / n, \quad a=$ 16.577 (5), $\quad b=7.838$ (1), $\quad c=16.771$ (4) $\AA, \quad \beta=$ $95.66(2)^{\circ}, \quad V=2168(3) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.47 \mathrm{Mg} \mathrm{m}^{-3}, \mathrm{Cu} K \alpha, \lambda=1.5418 \AA, \mu=3.66 \mathrm{~mm}^{-1}$, $F(000)=976, T=293 \mathrm{~K}$, final $R=0.043$ for 2451 reflections. The conformation of the molecule (RML-5) is governed by the steric and electrostatic interactions of the substituents. The diazepine ring adopts a boat conformation. The four-membered β-lactam ring is planar with phenyl substituents in the eclipsed conformation. Bond lengths and angles are normal.

[^2]Introduction. A great number of studies have been devoted to the search for structural analogues of cephalosporin and penicillin with specific activity (Guthikonda, Cama \& Christensen, 1974; Bose, Ram, Hoffman, Hutchinson \& Manhas, 1979; Itil, Saletu \& Marasa, 1974). It appeared of interest to us to combine the two functionalities of cephalosporin and penicillin by preparing compounds in which the β-lactam moiety is integrated into the benzodiazepine system and to investigate their pharmacological profile. Synthesis of the title compound (1) was accomplished by cycloaddition of phenoxyacetyl chloride onto $2-p$-bromo-phenyl)-4-methylthio-3H-1,5-benzodiazepine (Cortés \& Martinez, 1983). The structure determination was undertaken to elucidate the stereochemistry of the product.

[^0]: * On study leave from Tata Iron \& Steel Co.. Jamshedpur. India.

[^1]: * Lists of structure factors, anisotropic thermal parameters and distances and angles involving H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39415 (12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * 2a-(p-Bromophenyl)-4-methylthio-2-phenoxy-1,2,2a,3tetrahydroazeto[1,2-a] [1,5]benzodiazepin-1-one.
 \dagger Contribution No. 678 of the Instituto de Quimica, UNAM.
 \ddagger To whom correspondence should be addressed.

